
 Source Update Capture in Information Agents

Naveen Ashish*, Deepak Kulkarni and Yao Wang
NASA Ames Research Center

MS 269/3 Moffett Field CA 94035
{ashish, kulkarni, yxwang}@email.arc.nasa.gov

Abstract
In this paper we present strategies for successfully
capturing updates at Web sources. Web-based
information agents provide integrated access to
autonomous Web sources that can get updated. For many
information agent applications we are interested in
knowing when a Web source to which the application
provides access, has been updated. We may also be
interested in capturing all the updates at a Web source
over a period of time i.e., detecting the updates and, for
each update retrieving and storing the new version of
data. Previous work on update and change detection by
polling does not adequately address this problem. We
present strategies for intelligently polling a Web source
for efficiently capturing changes at the source.

1 Introduction
An important issue with internet information agents is
that of addressing the problem of updates at the remote
Web sources being integrated. Information agents
(Cohen 2000; Knoblock, Minton et al. 2001; Barish and
Knoblock 2002; Doan and Halevy 2002; Kambhampati,
Nambiar et al. 2002; Zadorozhny, Raschid et al. 2002)
and other Web-based information extraction and
integration systems (Davulcu, Yang et al. 2000;
Kushmerick 2000; Byers, Freire et al. 2001; Popa,
Velegrakis et al. 2002) provide integrated access to data
residing in different Web sources. These Web sources
are autonomous and the data on the Web pages at these
sources may change. For performance optimization,
information agents often cache or materialize data from
the remote Web sources locally (Adali, Candan et al.
1997; Ashish, Knoblock et al. 2002). When updates or
changes occur at Web sources, the cached data becomes
inconsistent with the original data. To avoid providing
the user with stale or inconsistent data, the information
agent must update the cache as changes take place at the
original Web sources. The information agent may also
require access to the different updated versions of data at
a Web source over a period of time. For instance the
main headline story at the CNN news site
(www.cnn.com) gets updated every hour or so (the same
news story may get updated or a different news item

∗ Naveen Ashish is with the USRA Research Institute for Advanced
Computer Science at NASA Ames.

appears as the headline news) and an information agent
may require access to all the different headline news
stories [we refer to the distinct data items (i.e., stories) as
versions] that appeared as headline news over a
particular day. We use the term capture for the process
of detecting an update and then retrieving and storing
the new updated version of the data from a source. The
information agent may also be monitoring (Barish and
Knoblock 2002) a source (via wrappers) and want to be
notified when an update has taken place.
The time (and frequency) of changes at many Web
sources are not known in advance. As a result, the
information agent must poll the Web source(s) to check
for updates and changes. To minimize the probability of
missing an update we must poll the sources very
frequently. However this high polling frequency may
not be feasible due to limited network and computational
resources. In fact many sources would not allow polling
the source at a high frequency as this causes an
undesirable load on their Web server. In this paper we
present the initial results of our work in progress on
capturing changes at a Web source while polling the
source only a limited number of times. Our approach is
based on our observation of regularities of update times
at many autonomous Web sources.

The problem of detecting changes at a source and
synchronizing the local copy has been studied in many
contexts such as Web data sources, Web proxy servers,
Internet crawlers and client-server database systems.
(Cho and Garcia-Molina 2000) describes an approach to
refreshing the local copy of an autonomous data source
to keep the copy up-to-date. (Cho and Ntoulas 2002)
presents a sampling-based strategy for keeping local
copies of data up-to-date in a World Wide Web or data
warehousing environment. (Barish and Obraczka 2000)
presents a survey of a variety of caching techniques for
the World Wide Web. (Bright and Raschid 2002)
presents a Web caching approach where a trade off can
be made between the recency of the retrieved
information versus the latency to retrieve it. Finally there
is work on synchronizing updates in data warehousing
(Labrinidis and Roussopoulos May 2000) and in client
server database system (Gal and Eckstein 2001)
environments. The above efforts have provided

approaches for optimizing various important aspects in
synchronizing cached data such as minimizing the “age”
of objects (i.e., ensuring that the data is refreshed very
soon after it is updated), maximizing the average
“freshness” (i.e, ensuring that most of the data is
consistent with that in the original source) etc. However,
an important problem that has not been addressed by
existing approaches is that of capturing all the changes
over a period of time. As another example, a Web source
that we have extensively studied is a source in the
aviation domain – the Digital Automatic Terminal
Information services (D-ATIS) messages published at
the ARINC Website1 where air traff ic messages are
published at the rate of 1-2 messages per hour. A new
message overwrites the existing message at the Web site.
In one of our applications, the information agent requires
access to all the different messages (versions) published
over a particular day. In this application, the information
agent provides integrated access of the ATIS data with
other aviation related data sources (such as radar data,
weather data etc.) and some typical queries (performed
by aviation safety analysts) require access to all the
distinct ATIS messages over an entire day. Capturing all
versions of data from a Web source is also important in
archival applications such as Web archive (Cho 2003)
and the Wayback machine (http://www.archive.org/)
where we wish to archive all the different versions of an
entire Web source as it changes over time. Existing work
on polli ng and change detection addresses issues such as
optimizing the age or freshness of cached data items but
does not provide a way to effectively capture changes at
a Web source while polli ng it a limited number of times.
In this paper we present an approach to capturing all (or
the maximum possible) updates at a Web source over a
period of time with limited resource constraints i.e., we
will poll the source only a limited number of times. Our
approach is motivated by and based on our observation
that for many sources, though autonomous, the updates
not only occur with a regular frequency but also
(mostly) at or around certain times or between certain
time intervals.

The rest of this paper is organized as follows. In section
2 we formalize the problem and our optimization goal. In
section 3 we present our observations of the distributions
of updates at Web sources. We then present strategies for
polli ng the Web sources and synchronizing data based on
the fact that the update distributions follow regularities at
many sources. We also present experimental results
supporting the validity of our hypotheses and
effectiveness of the approach. Finall y in section 4 we
discuss on going work and conclusion.

2. Formalizing the Problem
We first define some metrics that will allow us to state
our goal of effectively capturing updates formally. The

1 http://www.arinc.com/products/voice_data_comm/d_atis.html

metrics also will be a means to evaluate the effectiveness
of various strategies for capturing updates. We then
present a formal statement of the change capture
optimization problem.

2.1 Metrics
(a) Change Recall: We introduce the Change Recall
metric, which is a measure of how successful we have
been in capturing the changes at a source. Formally,
Change Recall i s defined as the number of changed items
downloaded, over the total number of changed items in a
particular time period. For instance if the ATIS source
was updated 30 times a particular day (i.e., there were 30
different messages published over the day) and we
captured 27 of these, then the Change Recall would be
27/30 = 0.9. Similarly if there were 18 distinct headline
stories that appeared as the top story on the CNN Web
site and we captured 15 distinct stories, the Change
Recall would be 15/18 = 0.83.
Ideally we would want the Change Recall to be 1. This
may not be possible given resource constraints, so our
goal is to maximize Change Recall .

(b) Freshness and Age
The Freshness and Age metrics were defined in (Cho and
Ntoulas 2002). The freshness of a cached data item F is
defined as:
F = 1 if the cached data item is up to date
 = 0 otherwise

The age A of an object is defined as:
A = 0 if the cached object is up to date
 = t - tu if the cached object is not up to date, where t=
current time and tu = time of last update

2.2 Problem Statement
If we are polli ng a source for detecting updates, and
polli ng with limited frequency, the particular times at
which we poll can significantly affect the Change Recall .
For instance, consider again the updates at the ATIS
source, where the update times are as shown in Table 1.

1:05, 1:14, 2:04, 2:15, 3:03, 3:14 ….

Table 1. Update Time Log

 Let’s say that we have the constraint that we can poll the
source only at most 2 times per hour. A naive strategy of
polli ng the source once at the turn of every hour and
once again at 30 min past the hour (i.e., poll at 1pm,
1:30pm 2pm, 2:30pm ) would cause us to miss half
the updates and result in a poor Change Recall of about
0.5. A more intelli gent strategy would be to poll the
source at 5 minutes past and 15 minutes past the hour
(1:05, 1:15, 2:05, 2:15 ...). With this strategy we would
capture almost all the updates and achieve a Change
Recall of close to 1.0 The key problem is thus of

deciding at what times to poll a source such that the
Change Recall i s maximized. We define this formally.

Definition: Polling Strategy
A "polli ng strategy" is defined as a tuple <T, S> where T
is a time period (such as an hour, day month etc.) over
which the polli ng times repeat in a cycle and,
S = { S1,S2,, Sm} is a set of times at which we poll the
source within each time period T.
So a strategy defined by <hour, { 5,15,45} > implies that
in each hour we poll 3 times, at 5 minutes past, 15
minutes and 45 minutes past the hour.

We now state the Change Recall optimization problem
formally:

Given:
O = a Web source
T = time period
N = maximum number of times we can poll S in the time
period T
H = previous history of updates at the source
Generate:
A polli ng strategy <T,S> such that the expected Change
Recall i s maximized, where we poll at most N times in
the time period T.

Note that in certain applications we may also be
interested in optimizing other metrics i.e., minimizing
the average age or maximizing the freshness. A polli ng
strategy that maximizes Change Recall , can also be used
to minimize the average age of cached data items and in
fact performs better than existing strategies in many
cases !

3. Polling Strategy
We make use of the historical data for update times at a
Web source to estimate the probabilit y of missing
updates with any polli ng strategy. Like existing
approaches, our approach is based on the assumption that
the historical pattern of updates (over an appropriate time
period) at a Web source is a good predictor of the future
pattern of updates at that source. We thus first talk about
our observations of update time distributions at Web
sources and then present approaches for generating an
optimal polli ng strategy.

3.1 Update Time Distributions
While a source may change anytime, the times of
updates at many sources do follow certain regular
distributions . In (Cho and Ntoulas 2002) it was shown
that the Poisson process effectively models change at the
Web sources they sampled. However there is a
difference in behavior between all Web pages of the
entire Web and a particular set of Web pages. While
hundreds of milli ons of Web pages in an entire set can be
considered to have been changed by a random process on
average, for a particular set of pages as well as different

scales of study, the randomness of the change
occurrences has to be addressed before we can make
confident predictions about the polli ng. While the
Poisson process may model updates of web sources in
general, specific sources may exhibit update distributions
that are distinctly different. It is our observation that for
many sources we can use more accurate models to fit the
distribution of update times at a Web source. For
instance for the ATIS source a log of update times for a
particular airport is shown in Table 1. Most of the
updates occur around 5 min past or 15 min past the hour.
This distribution is consistent across several months. Or
consider a source such as Hollywood.com. The “new
movies this week” 2 page changes once a week, mostly
on the thursday of the week, announcing new movies
releasing on Friday or the weekend. The fact that a
source gets updated according to some such distribution
and knowledge of this distribution can be exploited to
come up with a smart strategy for polli ng that source. For
instance from the observation that for the above ATIS
messages, there are mostly 2 messages published per
hour, the first by 5 min past the hour and the second by
15 min past the hour , we could poll the source at 5 min
and 15 min past the hour and we would capture most of
the updates. For the holl ywood.com. source we could
just poll once a week, every thursday when the movie
screenings change. Of course many update distributions
will not be that simple.
Our second observation is that the distribution of updates
of a web page would depend on semantics of the web
page itself. For example, the li kelihood of updates to the
CNN.com home page in a short time are higher if the
page is reporting a breaking story or a very rapidly
changing event.

So the update distribution is indeed helpful in deciding a
good polli ng strategy. The problem is to come up with an
approach to generate such a strategy automaticall y given
the update distribution. We now describe two alternative
approaches to generating the optimal polli ng strategy.
 (1) Empirical Approach: We can systematicall y consider
all possible polli ng times for an interval of interest and
can use the historical information to compute how many
changes would have been missed if we had used
particular polli ng strategy. If this can be done in a
computationally eff icient manner, the approach can be
used to find an optimal strategy.
(2) Theoretical Modeling Approach: We can model the
update patterns using an appropriate probabilit y
distribution and do analysis based on this probabilit y
distribution to infer the best polli ng strategy. This
approach has been taken in previous work and is
computationally eff icient.

3.1.1 Empirical Approach
Suppose { T1, T2, … Ts} is the set of time points at which

2 http://www.hollywood.com/movies/this_week.asp

one would consider polli ng in the interval T, where T(i +

1) > Ti. For example, { 1, 2, … 60} (minutes) is the set of
time points at which one would consider polli ng ATIS
data in a typical hour (T = 60 minutes). We define a
probabilit y function, NumMisses(Ti, k) as the number of
missed updates in the interval (Ti, Ti+k) if we poll at Ti
and Ti+k and additionally poll l times in the interval (Ti,
Ti+k) using an optimal strategy. Let Polli ngSet(Ti,k,l) be
the corresponding set of time points at which one would
poll using the optimal strategy. Also, N is the maximum
number of times we can poll i n the interval T as defined
in the problem statement. NumMisses(Ti, k, 0) can
generall y be derived from historical data for all possible
values of i and k.

We propose the following algorithm for computing the
NumMisses function eff iciently for all possible l of
interest:

for l = 1 to (N - 2)
 for i = 1 to s
 for k = 1 to s
 NumMisses(T i ,k,l) = Min j=1 to (k - 1) (NumMisses(T i ,j,1)

 + NumMisses(T i + j , k - j, l – 1))

 Let jmin be value of j for which above
 expression is minimum

 PollingSet(Ti,k,l)=PollingSet(Ti,k,1) U

 PollingSet(T i + jmin ,k - jmin,l – 1)
 End for
 End for
End for

The set of time points in the best polli ng strategy in the
interval T is Polli ngSet(Timin, kmin, N-2) where imin and
kmin are i and k for which NumMisses(Ti, k, N-2) is
minimum.

In the above algorithm, NumMisses is computed for
o(s*s*N) input values. Each computation of
NumMisses(Ti ,k,l) and Polli ngSet(Ti ,k,l) can be done in
at most s steps. So the above algorithm can compute
NumMisses(Ti, k , l) and Polli ngSet(Ti ,k,l) using at
most s ** 3 * N computations for all i , k and l. As the
final step involves computing the minimum of s ** 2

values, this algorithm can compute the best polli ng
strategy in O(s ** 3 * N) steps.

Using the above algorithm we thus systematicall y
consider all possible combinations of polli ng times given
the polli ng frequency and determine which is the best
polli ng strategy. This approach is li kely to be practical
for small values of s, but not for large values of s. In the
next section, we will describe another approach that can
be used even for large values of s.

3.1.2 Theoretical Modeling Approach
Generating the optimal polli ng strategy by exhaustive
search may be prohibiti vely expensive in many cases i.e.,
when there are a very large number of possible
combinations of possible polli ng times and searching
through the entire space is expensive. We present an

eff icient algorithm for determining a near optimal poll ing
strategy. The algorithm is based on the assumption that
the probabilit y density function representing the update
probabilit y of a particular data item on a Web source
being updated is uniform in small time intervals. This
assumption is reasonable but not completely accurate for
many Web sources. Thus the algorithm is not guaranteed
to find an optimal polli ng strategy but instead finds a
near optimal strategy that is almost as good as the
optimal strategy.

The algorithm is based on a couple of very elementary
characteristics of updates in different kinds of time
intervals. First, there may be intervals where only at most
one update can occur. There is no need to poll multiple
times in such intervals, rather one can poll just once, at
the end of the interval. Next, for intervals where two or
more updates may occur any time we need to poll as
many times as we can. For such intervals, if we know
how the probabilit y of missing an update changes as a
function of the number of times we poll i n that interval,
we can systematicall y determine how many times to poll
in each such interval (given a limited number of total
polli ng times).
. There are thus two primary steps in the algorithm:

(i) Find the time intervals where there are zero
or at most one updates (we call such
intervals single update intervals) and assign
poll s to those intervals appropriately.

(ii) For the remaining intervals i.e., intervals
where 2 or more updates may occur (we
call such intervals multiple update
intervals), and assign the remaining poll s
appropriately.

Consider again the ATIS messages. Let’s say at most 3
messages are published (i.e., updated) every hour. We
tag these messages (the first, second and third) as A, B
and C. Say the update probabilit y distributions
(represented by probabilit y density functions) of each of
these messages is as shown in Fig 2 which shows a plot
of update probabilit y distributions versus time (in
minutes). A is updated only sometime between t=5 and
t=15 min etc. If we poll only thrice an hour, at t=15,t=35
and t=50 we will capture all the updates A,B and C.

0
0.2

0.4
0.6
0.8

1

0 5 10 15 20 25 30 35 40 45 50 55 60

A

B

C

 Fig 2. Update Probabilit y Distributions

This is possible because the probabilit y distributions of
A,B and C do not overlap anywhere. Only at most one
message (A,B or C) can get updated in a time interval
and we simply poll once at the end of that interval. What
if the probabilit y distributions do overlap ? For instance
consider a different distribution as shown in Fig 3. Both
A and B can get updated between t=10 and t=20 and
both B and C can get updated between t=30 and t=35.
These are the multiple update intervals. There are also
single update intervals. For instance only A may occur
between t=5 and t=20 (so we need poll only once at the
end of this interval at t=20). Similarly we poll once at
t=10, t=30 ,t=35 and t=40. Note that there is a possibilit y
of missing an update in this case. Two or more updates
(A and B) could occur between t=10 and t=20 and we
will capture only one of them. Also two or more updates
(B and C) could occur between t=30 and t=35. So far we
have assigned a total of 5 poll s per hour. Suppose we
could poll more than 5 times. At what times should we
poll additionally ? Polli ng more in a multiple update
intervals decreases the probabilit y of missing an update
in that interval. We will examine shortly as to how
exactly this probabilit y varies with the number of times
we poll i n the interval. So any additional poll s should be
assigned to the multiple update intervals. But there could
be many such multiple update intervals. So how do we
relatively assign the additional poll s between these
intervals ? For instance in the current example we have 2
multiple update intervals and if we had a total of 5
additional poll s we could assign 1 additional poll to the
first multiple update interval and 4 to the second or 2 to
the first and 3 to the second etc. Which assignment of
these minimizes the total probabilit y of missing an
update ? Having a model of the update probabilit y
distributions of the updates in the different multiple
update intervals will allow us to determine the
probabilit y of missing updates for various assignments.
In general an update distribution may be of any form
within an update interval. However for many sources we
can approximate the probabilit y density function for an
update distribution to be uniform in that interval, for
intervals that are suff iciently small .

0

0.5

1

0 5 10 15 20 25 30 35 40 45 50 55 60

time (minutes)

p
ro

b
a

b
ili

ty A

B

C

Fig 3. Update Probabilit y Distributions

For such cases, i.e., where approximating the probabilit y
distribution as uniform in small i ntervals is reasonable,

we can evaluate the probabilit y of missing updates for
different assignments and thus find the optimal
assignment. We describe how we do this below. Let’s
say we have i such multiple update intervals. Suppose we
poll K i times in an interval i . What is the probabilit y of
missing an update in the interval i now? We poll at
uniform sub-intervals within interval i as shown in Fig 4.
We will mi ss an update in interval i i f and only if the two
updates occur together in any one of the K i sub-intervals.
The probabilit y of both updates occurring in a particular
sub interval is given by:
(PrA t/K i) * (PrB t/K i) = PrAPrBt2/K i

2

Fig 4. Polli ng in a multiple update interval.

where PrA and PrB are the probabilit y densities of A and
B in that interval respectively. The probabilit y that two
updates occur together in any of the Ki sub-intervals is
simply:
K i* (PrA t/K i) * (PrB t/K i) = PrAPrBt2/K i

This expression is of the form Cit

2/K i where Ci=PrAPrB is
a constant. Although we have ill ustrated the above for
the case where 2 updates can occur in an interval, the
expression representing the probabilit y of missing an
update is of the form where 2 or even more updates can
occur in an interval.
Now the probabilit y of missing any update in any of the i
multiple update intervals is:
Σn i=1 Cit

2/K i

Note that we take all multiple updates to be of equal
length i.e., t. If the multiple update intervals are not
originall y of equal length we can sub divide them into
intervals of length of the greatest common divisor of the
lengths of the (original) multiple update intervals.
We have to find Ki such that ΣKi=K
and Σn i=1 Ci/K i

is minimized. This is a well known optimization problem
and the minima lies when:
C1/K1

2=C2/K2
2 = …… Cn/Kn

2 (condition I)

Thus we simply assign the K is according to the above
equation. The algorithm to find a (near) optimal polli ng
strategy using theoretical modeling can be stated as
follows:

sub polli ng Ki times
interval

i th interval
 t

1. Find the update probability
distributions of the various
updates.

2. Find the single update
intervals.

a. Poll once at the beginning
and once at the end of
each such interval.

3. Find the multiple update
intervals.

a. Assign the remaining polls
to the multiple update
intervals in the
proportion defined by
condition I above

While we do not present a proof here, the above
algorithm is linear in the number of possible polli ng
points one would consider in an interval.

3.1.3 Experimental Results
We evaluate the effectiveness of our approaches by
measuring the Change Recall from the ATIS Web server
using various strategies3. We used real historical update
time data collected over several months from the ATIS
Web server and tested the strategies for Change Recall
over the actual ATIS source. We evaluate three different
strategies:

(i) A naïve uniform strategy where given N
polls in a time period (an hour in this case)
we simply poll N times at uniform intervals
in the time period.

(ii) An optimal polling strategy generated by
exhaustive search.

(ii i) A near optimal polli ng strategy generated
by theoretical modeling.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12

Polling frequency (times/hr)

C
ha

ng
e

R
ec

al
l

Naive (uniform)

Exhaustive search

Theoretical modeling

Fig 5. Effectiveness of strategies.

3 At this point we have only evaluated the strategies with the ATIS
Web source. However by the time of the workshop we expect to
provide evaluation results with several other Web sources.

As we can see in Fig 5 above, the optimal polli ng
strategies (both by exhaustive search and theoretical
modeling) result in significantly better Change Recall
than the naïve uniform strategy. The improvement is
more significant when the polli ng frequency is less.
Thus exploiting the update time distribution indeed helps
in achieving a better Change Recall versus existing
sampling based approaches that would result in Change
Recall obtained by the naïve (uniform) approach. Also
the theoretical modeling strategy performs almost as well
as the exhaustive search strategy. So, this indicates that
in cases where the exhaustive search strategy is
computationally expensive, finding a near optimal
strategy by theoretical modeling is a good alternative.
We must note that in some other scenarios the naïve
strategy may perform significantly worse. For instance
suppose we had an update pattern that was of the form
{ 1:00, 1:05, 1:10, 1:15, 2:00, 2:04, 2:09, 2:15,3:01,3:05
……} With a naive strategy with N=4 (i.e., polli ng at
1:00,1:15,1:30,2:00, …) we would get a very poor
Change Recall of ~ 0.25 whereas with the optimal
strategies we would get a Change Recall of close to 1.0
when polli ng 4 times an hour.

4. Work in Progress and Conclusion
In this paper, we introduced change recall as an
important metric to be considered in remote data source
synchronization. Then, we noted that it is possible to
utili ze knowledge of specific update probabilit y
distributions and their dependence of domain semantics
in devising a polli ng strategy. We discussed two
different polli ng strategies we are using in our
applications. Based on preliminary results, these
strategies are more effective for capturing changes than
existing strategies, which do not focus on the change
capture problem in particular and are based solely on the
frequency of updates. There are several tasks and issues
that we are working on right now, namely:

• More extensively studying the update patterns at
a variety of different autonomous Web sources.

• Testing the effectiveness of the polli ng
strategies with many other Web sources.

• Extending the theoretical modeling approach to
cases where the uniform distribution
approximation is not reasonable.

• Testing the effectiveness of our strategies in
optimizing factors other than change capture,
such as age and freshness of cached objects.

• Utili zing the semantics of the data to predict the
probabilit y of the next update and incorporating
this knowledge in generating the polli ng
strategy.

Besides information agents, our change capture strategies
are also applicable to a variety of other systems such as
Web crawlers, Web proxy server caches and Web
archiving systems where it is important to synchronize
data cached from autonomous sources.

References

Adali, S., K. S. Candan, et al. (1997). Query Caching and

Optimization in Distributed Mediator Systems.
Proceedings of the ACM SIGMOD
International Conference on Management of
Data, Tucson, AZ.

Ashish, N., C. A. Knoblock, et al. (2002). "Selectively
Materializing Data in Mediators by Analyzing
User Queries." International Journal of
Cooperative Information Systems (IJCIS) 11(1-
2): 119-144.

Barish, G. and C. Knoblock (2002). An Expressive and
Efficient Language for Information Gathering
on the Web. Proceedings of the Sixth
International Conference on AI Planning and
Scheduling (AIPS-2002) Workshop, Toulouse,
France.

Barish, G. and K. Obraczka (2000). World Wide Web
Caching:Trends and Techniques. IEEE
Communications Magazine.

Bright, L. and L. Raschid (2002). Using Latency-
Recency Profiles for Data Delivery on the Web.
Proceedings of the 28th VLDB Conference,
Hong Kong, China.

Byers, S., J. Freire, et al. (2001). Efficient Acquisition of
Web Data through Restricted Query Interfaces.
Poster Proceedings of the Tenth International
World Wide Web Conference, WWW10, Hong
Kong, China.

Cho, J. (2003). Web History and Evolution Archiving
(WHEN).

Cho, J. and H. Garcia-Molina (2000). Synchronizing a
Database to Improve Freshness. Proceedings of
2000 ACM International Conference on
Management of Data (SIGMOD), Dallas.

Cho, J. and A. Ntoulas (2002). Effective Change
Detection Using Sampling. Proceedings of the
20th VLDB Conference, Hong Kong, China.

Cohen, W. (2000). "WHIRL: A Word-based Information
Representation Language." Artificial
Intelligence 118(1-2): 163-196.

Davulcu, H., G. Yang, et al. (2000). Computational
Aspects of Resilient Data Extraction from
Semistructured Sources. Proceedings of the
Nineteenth ACM SIGMOD SIGACT-SIGART
Symposium on Principles of Database Systems,
Dallas, TX.

Doan, A. and A. Halevy (2002). Efficiently Ordering
Query Plans for Data Integration. Proceedings
of the International Conference. on Data
Engineering (ICDE), San Jose, CA.

Gal, A. and J. Eckstein (2001). "Managing Periodically
Updated Data in Relational Databases: A
Stochastic Modeling Approach." Journal of the
ACM 48(6): 1141-1183.

Kambhampati, S., U. Nambiar, et al. (2002). Havasu: A
Multi-Objective, Adaptive Query Processing

Framework for Web Data Integration. Tempe,
ASU CSE TR-02-005.

Knoblock, C. A., S. Minton, et al. (2001). "The Ariadne
Approach to Web-based Information
Integration." International Journal of
Cooperative Information Systems (IJCIS)
Special Issue on Intelligent Information Agents:
Theory and Applications 10(1/2): 145-169.

Kushmerick, N. (2000). "Wrapper Verification." World
Wide Web Journal 3(2): 79-94.

Labrinidis, A. and N. Roussopoulos (May 2000).
WebView Materialization. Proceedings of the
ACM SIGMOD International Conference on
Management of Data, Dallas, TX.

Popa, L., Y. Velegrakis, et al. (2002). Translating Web
Data. Proceedings of the International
Conference on Very Large Databases (VLDB),
Hong Kong, China.

Zadorozhny, V., L. Raschid, et al. (2002). Efficient
Evaluation of Queries in a Mediator for
WebSources. Proceedings of the ACM
SIGMOD Conference on Management of Data,
Madison, WI.

